The Use of Systems Engineering Principles to Improve Learning Outcomes in a Multidisciplinary Course

Zachary D. Asher, PhD
Nicole L. Ramo
Thomas H. Bradley, PhD
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Authors

- Zachary D. Asher
 - Now an Assistant Professor in the Department of Mechanical and Aerospace Engineering
 - Western Michigan University

- Nicole L. Ramo
 - PhD candidate and graduate teaching fellow in the Department of Biomedical Engineering
 - Colorado State University

- Thomas H. Bradley
 - Associate Professor in the Department of Mechanical Engineering
 - Associate Directory of Systems Engineering
 - Colorado State University
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Modern Engineering Challenges
• Large scale problems
• Multidisciplinary aspects
• System hierarchy
• Complexity

Engineering education must be responsive

- Weinberg et. al. “A multidisciplinary model for using robotics in engineering education”
- Miller et. al. “A model curriculum for a capstone course in multidisciplinary engineering design”
- Roberts et. al. “Developing a multidisciplinary engineering program at Arizona State University east campus”
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Modern Engineering Challenges: An Example

• The modern vehicle:

 • Vehicle powertrain course
 100% mechanical engineering
 50% mechanical / 50% electrical
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Introduction

Systems Engineering

- Allows successful design of broad, risky, and complicated systems
 - Multidisciplinary systems

- Is a key component of sustaining U.S. competitiveness
 - Universities are developing and expanding systems engineering courses and departments

- Could improve learning outcomes for a multidisciplinary course
 - Vehicle Powertrains course at Colorado State University
 - Graduate level mechanical engineering course
 - Each week: 2 x 50 minute lectures, 1 x 50 laboratory
 - Focus on Matlab and Simulink model development
 - 12 laboratories, 2 exams, and 1 capstone project
 - 2017 class: 18 students, 2015 class: 20 students
A systems engineering lecture was given in the course

• Systems engineering is not an emphasis in the mechanical engineering curriculum
• Lecture given to coincide with the beginning of work on the course capstone project
• Systems engineering comprehension, retention, and perceived usefulness are evaluated
 ◦ Voluntary pre-lecture survey (16 of 18 responses)
 ◦ Voluntary post-lecture survey (16 of 18 responses)
 ◦ Voluntary end of course survey (18 of 18 responses)
• Systems engineering application in the course is evaluated
 ◦ Individual course capstone projects

Analyzed with:
1. Independent group t-test
2. Bootstrap group mean difference
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

A systems engineering lecture was given in the course

1. Course relevant concepts
 ◦ Defining the system boundary
 ◦ Requirements development
 ◦ Concurrent development
 ◦ Applying the V-model
 ◦ Resource management
 ◦ Configuration management
 ◦ Risk management
 ◦ Tailoring applied systems engineering
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

A systems engineering lecture was given in the course

1. **Course relevant concepts**
 - Defining the system boundary
 - Requirements development
 - **Concurrent development**
 - Applying the V-model
 - Resource management
 - Configuration management
 - Risk management
 - Tailoring applied systems engineering
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

A systems engineering lecture was given in the course

1. Course relevant concepts
 - Defining the system boundary
 - Requirements development
 - Concurrent development
 - Applying the V-model
 - Resource management
 - Configuration management
 - Risk management
 - Tailoring applied systems engineering
A systems engineering lecture was given in the course

1. Course relevant concepts
 - Defining the system boundary
 - Requirements development
 - Concurrent development
 - Applying the V-model
 - Resource management
 - Configuration management
 - **Risk management**
 - Tailoring applied systems engineering
A systems engineering lecture was given in the course

2. Potential systems-level scopes for the course capstone project
 - Well-to-wheel analysis
 - Electrical grid power source considerations
 - Ride-sharing or non-vehicle ownership scenarios
 - Powertrain control optimization
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

A systems engineering lecture was given in the course

2. Potential systems-level scopes for the course capstone project
 - Well-to-wheel analysis
 - Electrical grid power source considerations
 - Ride-sharing or non-vehicle ownership scenarios
 - Powertrain control optimization
A systems engineering lecture was given in the course

2. Potential systems-level scopes for the course capstone project
 - Well-to-wheel analysis
 - Electrical grid power source considerations
 - Ride-sharing or non-vehicle ownership scenarios
 - Powertrain control optimization

Figure 2 – Example of Hourly Marginal Fuels Data by Time of Day [Source: PJM, 2008]

A systems engineering lecture was given in the course

2. Potential systems-level scopes for the course capstone project

- Well-to-wheel analysis
- Electrical grid power source considerations
- Ride-sharing or non-vehicle ownership scenarios
- Powertrain control optimization
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

A systems engineering lecture was given in the course

2. Potential systems-level scopes for the course capstone project
 - Well-to-wheel analysis
 - Electrical grid power source considerations
 - Ride-sharing or non-vehicle ownership scenarios
 - Powertrain control optimization
Student reported level of systems engineering knowledge

• “Before lecture” → “After lecture”
 ◦ T-test: independent response
 ◦ Group mean difference: Increase in systems engineering knowledge

• “After lecture” → “End of the Course”
 ◦ T-test: not independent response
 ◦ Group mean difference: some evidence that systems engineering knowledge increased
Student responses to the statement: “Development of modern powertrains requires a multidisciplinary approach”

- “After lecture” → “End of the Course”
 - T-test: not independent response
 - Group mean difference: strong agreement after the lecture and at the end of the course
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Student responses to the statement: “Is systems engineering useful?”

• “After lecture” → “End of the Course”
 ◦ T-test: not independent response
 ◦ Group mean difference: some evidence that agreement increases after completion of the course
Student responses to the statement “Implementation of systems engineering improves development of multidisciplinary systems”

• “Before lecture” → “After lecture”
 ◦ T-test: independent response
 ◦ Group mean difference: strong student agreement

• “After lecture” → “End of the Course”
 ◦ T-test: not independent response
 ◦ Group mean difference: some evidence for slightly stronger student agreement
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Student responses to the statement “systems engineering could improve performance in labs, homework, and/or exam prep”

• “After lecture” → “End of the Course”
 ◦ T-test: not independent response
 ◦ Group mean difference: some evidence that students disagree with this more after completion of the course
 ▪ Note: students still mostly agree with this statement
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Student responses to the statement “systems engineering could improve performance in the capstone project”

- “After lecture” → “End of the Course”
 - T-test: not independent response
 - Group mean difference: some evidence that students disagree with this more after completion of the course
The survey also had a section for comments from students

- “The split between mechanical and electrical engineering is much more prominent in education than in industry. Any course that bridges the gap is A-Okay in my view!”
- “Two lectures on systems engineering and its application to the class would be beneficial”

- Students perceived value in teaching systems engineering in the course
- Additional systems engineering content may be necessary
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Systems-level project scopes were evaluated and compared to the last time the course was taught

- Could be included in addition to the modeling, simulation, and design requirements
- All projects ended up with a systems-level scope
Using Systems Engineering to Improve Learning Outcomes in a Multidisciplinary Course

Summary

• Systems engineering lecture given in our vehicle powertrains course
 ◦ Presented course relevant concepts (concurrent development, V-model, etc.)
 ◦ Presented potential systems-level scopes (well-to-wheel analysis, ride-sharing, etc.)

• Before lecture, after lecture, and end of course surveys administered
 ◦ Student knowledge about systems engineering significantly improved
 ◦ Students are confident in systems engineering relevance and that it will improve engineering development
 ◦ Students may have lost some confidence in their abilities to implement systems engineering after completion of the course
 ◦ One student directly suggested an additional lecture on systems engineering

• Student capstone projects evaluated
 ◦ Systems-level project scopes increased from 33% to 100%
Conclusions

• Inclusion of the systems engineering lecture improved course outcomes
• Students attribute benefit to the inclusion of a systems engineering lecture
• Inclusion of an additional systems engineering lecture focused on an in-depth example may further improve learning outcomes

• Overall: we were able to raise systems engineering awareness/understanding and the students attributed a benefit to this
Future Work

- Apply this same methodology to other multidisciplinary graduate-level courses
- Implement additional systems engineering course components
- Investigate the role of previous systems engineering education
- Develop additional techniques to evaluate improved learning outcomes
Systems Engineering + Multidisciplinary Courses = Success!

Zachary D. Asher, PhD
Nicole L. Ramo
Thomas H. Bradley, PhD

2018 ASEE ANNUAL CONFERENCE & EXPOSITION
JUNE 24–27, 2018 | SALT PALACE CONVENTION CENTER | SALT LAKE CITY, UT